La recta tangente a una función f(x) es como se ha visto el límite de las rectas secantes cuando uno de los puntos de corte de la secante con la función se hace tender hacia el otro punto de corte. También puede definirse a la recta tangente como la mejor aproximación lineal a la función en su punto de tangencia, esto es, la recta tangente es la función polinómica de primer grado que mejor aproxima a la función localmente en el punto de tangencia que consideremos.
Uso de las derivadas para realizar gráficos de funciones.
Aproximación local de Taylor
Hemos visto que podemos aproximar mediante su recta tangente a una función derivable localmente en un punto. Si se cumple que la función es suficientemente suave en el punto o dominio de estudio (esto es, la función es de clase C^\infty) cabe la posibilidad de intentar aproximar a la función no por polinomios de grado uno, sino por polinomios de grado dos, tres, cuatro y sucesivamente. Esta aproximación recibe el nombre de "desarrollo polinómico de Taylor"
Cálculo de puntos
Puntos singulares
Se denominan puntos singulares ó estacionarios a los valores de la variable en los que se anula la derivada f '(x) de una función f(x), es decir, si f ´(x)=0 en x1, x2, x3, . . . , xn, entonces x1, x2, x3, . . . , xn son puntos singulares de f(x). Los valores f(x1), f(x2), f(x3), . . . , f(xn), se llaman valores singulares.
Puntos críticos
Por punto crítico se entiende: un punto singular, un punto donde no exista la derivada o un punto extremo a o b del dominio [a,b] de definición de la función.
Si la segunda derivada es positiva en un punto crítico, se dice que el punto es un mínimo local; si es negativa, se dice que el punto es un máximo local; si vale cero, puede ser tanto un mínimo, como un máximo o un punto de inflexión. Derivar y resolver en los puntos críticos es a menudo una forma simple de encontrar máximos y mínimos locales, que pueden ser empleados en optimización. Aunque nunca hay que despreciar los extremos en dichos problemas.
No hay comentarios:
Publicar un comentario